THA INSTITUTE OF SCIENCE AND TECHNOLOGY :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits - I (19EE0201)
Year \& Semester : I - B. Tech. \& II - Semester

Course \& Branch: B. Tech. - EEE
Regulation : R19

UNIT-I

1. a) Define the Resistance and Conductance

L1, 3M
b) State Ohm's Law? Also write its limitations.

L1, 3M
c) State Kirchhoff's Laws?

L1, 2M
d) Derive the equivalent resistances when two resistances are connected in L1, 2M parallel.
e) Derive the equivalent resistances when two resistances are connected in series.

L1, 2M
2.

Explain various types of energy sources with suitable diagrams.
L1, 12M
3. Derive the expression for Delta connected resistances in terms

L2, 12M of Star connected resistances.
4. Find the current in 5Ω resistor for the network shown in Fig. 1.1.

L3, 12M

Fig. 1.1
5. Find the equivalent resistance across the terminals A and B of the network

L3, 12M shown in Fig. 1.2 using Star-delta transformation

Fig. 1.2
6. Find the current passing through each resistor for the circuit below in Fig. 1.3.

Fig. 1.3
7. Determine the current in the 5Ω resistor in the network given in Fig. 1.4.

Fig. 1.4
8. Determine the voltages at each node for the circuit shown in Fig. 1.5.

Fig. 1.5
9. Determine the current in the 5Ω resistor in the network given in Fig. 1.6

Fig. 1.6
10. Write the node equations for the circuit shown below in Fig. 1.7.

Fig. 1.7

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits - I (19EE0201)
Year \& Semester : I - B. Tech. \& II - Semester

Course \& Branch: B. Tech. - EEE
Regulation : R19

UNIT-II

1. a) Explain Faradays laws of electromagnetic induction

L1, 3 M
b) Define Relative permeability and coupling coefficient

L1, 3 M
c) What are self-inductance and mutual inductance?

L1, 2 M
d) State the transformer working principle.

L1, 2 M
e) Draw voltage current and power waveforms for pure inductive circuit

L1, 2 M
2. Two coupled coils with $\mathrm{L}_{1}=0.02 \mathrm{H}, \mathrm{L}_{2}=0.01 \mathrm{H}$ and $\mathrm{k}=0.5$ are connected in four

L3, 12 M different ways such as series aiding, series opposing, parallel aiding and parallel opposing. Determine the equivalent inductances in all the four cases.
3. State and explain Faraday's Laws of Electro Magnetic Induction.

L1, 12 M
4. Derive the expression for equivalent inductance when the coupled inductors L2, 12 M are connected in series aiding and series opposition.
5. Explain Self Inductance, Mutual Inductance and Co-efficient of coupling in

L5, 12 M detail. Give the relation between $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{k}$ and M .
6. Write the Comparison of Electric and Magnetic circuits? Also explain the

L6, 12 M analogy between the Electric and Magnetic circuits.
7. Derive the expression for equivalent inductance when the coupled inductors L4, 12 M are connected in parallel aiding and parallel opposition.
8. Discuss about Ideal transformer.

L1, 12 M
9. When two identical coupled coils are connected in series, the inductance of the combination is found to be 80 mH . When the connections to one of the coils are reversed, a similar measurement indicates 20 mH . Find the coupling coefficient between the coils.
10. Derive an expression for energy stored in an inductor

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits - I (19EE0201)
Year \& Semester : I - B. Tech. \& II - Semester

Course \& Branch: B. Tech. - EEE
Regulation
: R19

UNIT-III

1. a) Define Peak factor and Form factor.

L1, 3 M
b) Explain the concept of power factor, real and reactive power. L1, 3 M
c) Draw phasor diagram for simple RC series circuit

L1, 2 M
d) Draw voltage current and power waveforms for pure capacitive circuit.

L1, 2 M
e) Define Root Mean Square value.

L1, 2 M
2. Find the form factor of the half wave rectified sine wave shown in Fig. 2.1.

L2, 12 M

Fig 2.1
3. Find the form factor for the following waveform shown in Fig. 2.2.

Fig. 2.2
4. Find the form factor for the following waveform shown in Fig. 2.3.

L2, 12 M

Fig. 2.3
5. The full wave rectified sine wave shown in Fig. 2.4 has a delay angle of 60°.

L5, 12 M Calculate the average value and RMS value.

Fig. 2.4
6. A $1 \mathrm{k} \Omega$ resistor is connected in series with an inductance of 50 mH across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC Supply. Find,
(a) Inductive reactance
(b) Impedance
(c) Current
(d) Phase angle
(e) Voltage drop across resistance
(f) Voltage drop across Inductance
7. A 50Ω resistor is connected in series with a $25 \mu \mathrm{~F}$ Capacitor across a 230 V ,

50HZ AC Supply. Find
(a) Capacitive reactance
(b) Impedance
(c) Current (d) Phase angle
(e) Voltage drop across resistance
(f) Voltage drop across Capacitance
(g) Power Factor.
8. A resistance of 50Ω, inductance of 29.8 mH , Capacitance of $3.4 \mu \mathrm{~F}$ Capacitor

L3, 12 M are connected in series across a 200V, 250 HZ AC Supply. Find
(a) Impedance of circuit
(b) Current
(c) Power consumed in the circuit
(d) Power factor
(e) Voltage drop across resistance
(f) Voltage drop across Inductance
(g) Voltage drop across Capacitance.

Also draw the phasor diagram for the circuit.
9. A Capacitor of $1 \mu \mathrm{~F}$ is connected across an AC Voltage of $\mathrm{V}=170 \sin (400 \mathrm{t})$.

Determine,
(a) Capacitive Reactance
(b) Sinusoidal expression for current
(c) Maximum current.
10. A Pure Inductive coil allows a current of 10 A to flow from a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ AC Supply. Find,
(a) Inductive Reactance
(b) Inductance of the coil
(c) Power Absorbed
(d) Sinusoidal equations for Voltage and Current.

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits - I (19EE0201)
Year \& Semester : I - B. Tech. \& II - Semester

Course \& Branch: B. Tech. - EEE
Regulation : R19

UNIT-IV

1. a) State Norton's theorem.

L1, 3 M
b) State Milliman's.

L1, 3 M
c) State Tellegen's theorem.

L1, 2 M
d) State maximum power transfer theorem.

L1, 2 M
e) State Compensation theorem.

L1, 2 M
2. Find the current passing through 3Ω Resistor for the circuit shown below in

L3, 12 M
Fig. 5.1 by using Superposition theorem.

Fig. 5.1
3. Determine the Norton's equivalent circuit for the circuit shown in Fig. 5.2.

Fig. 5.2
4. Using Millmann's theorem, find the current in the 10Ω Resistor for the circuit $\mathbf{L 4}, 12 \mathbf{M}$ shown in Fig. 5.3.

Fig. 5.3
5. Verify Reciprocity Theorem for the network shown in Fig. 5.4.

Fig. 5.4
6. Determine the Norton's equivalent circuit for the circuit shown in Fig. 5.5.

Fig. 5.5
7. Determine the voltage across ($2+\mathrm{j} 5) \Omega$ impedance as shown in Fig. 5.6 by

L4, 12 M using Superposition theorem

Fig. 5.6
8. Determine the Thevenin's equivalent circuit for the circuit shown in Fig. 5.7.

Fig. 5.7
9. Determine the Norton's equivalent circuit for the circuit shown in Fig. 5.8.

Fig. 5.8
10. For the circuit shown in Fig 5.9, find the value of load impedance for which the source delivers maximum power. Also calculate the value of maximum power.

Fig. 5.9

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road - 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code : Electrical Circuits - I (19EE0201)
Year \& Semester : I - B. Tech. \& II - Semester

Course \& Branch: B. Tech. - EEE
Regulation : R19

UNIT-IV

1. a) Define resonance and Q-Factor.

L1, 3 M
b) A resonating series circuit has 10Ω resistances. If the supply is 10 V , obtain L1, 3 M the power at half power frequency.
c) Define Q factor of parallel resonating circuit L1, 2 M
d) Define bandwidth in resonance circuit.

L1, 2 M
e) Draw locus diagram for series RL circuit with ' L " as the variable parameters.

L1, 2 M
2. A series RLC circuit has $\mathrm{R}=10 \Omega, \mathrm{~L}=0.5 \mathrm{H}$ and $\mathrm{C}=40 \mu \mathrm{~F}$. The applied voltage

L3, 12 M is 100 V . Find,
(a) Resonant frequency \& Quality factor of a coil
(b) Bandwidth
(c) Upper and lower Half power frequencies
(d) Current at resonance \& current at half power points
(e) Voltage across inductance \& voltage across capacitance at resonance
3. a) In a parallel resonance circuit (Tank circuit) $R=2 \Omega, L=1 \mathrm{mH}$ and $\mathrm{C}=10 \mu$. Find the Resonant frequency, Dynamic impedance and Bandwidth.
b) Obtain the expression for resonant frequency for parallel RL-RC circuit.

L2, 6 M
4. Obtain the expression for resonant frequency, bandwidth and Q -factor for L2, 12 M parallel R-L-C circuit.
5. Obtain the expression for resonant frequency, bandwidth and Q -factor for L2, 12 M Series R-L-C circuit.
6. Two coils one of $R_{1}=0.51 \Omega, L_{1}=32 \mathrm{mH}$ and other coil of $\mathrm{R}_{2}=1.3 \Omega, \mathrm{~L}_{2}=15 \mathrm{mH}$ L3, 12 M are in series and are connected in series with a capacitor of $\mathrm{C}_{1}=25 \mu \mathrm{~F}$, $\mathrm{C}_{2}=62 \mu \mathrm{~F}$ and a resistor of $\mathrm{R}_{3}=0.24 \Omega$. Determine,
(a) Resonant frequency
(b) Quality factor of the circuit
(c) Bandwidth
(d) Power dissipated in the circuit at resonance frequency if the supply is 230V AC Supply.
7. Write the comparison between series resonance and parallel resonance.

L5, 12 M
8. Derive and draw the Locus diagram of a Series RL Circuit.

L3, 12 M
9. Draw the Locus diagram of a Series RC Circuit.

L4, 12 M
10. In a parallel Resonant circuit shown in Fig. 4.1, find the Resonant frequency,

Dynamic impedance, Bandwidth, Q-factor and Current at resonance.

Fig. 4.1

Prepared by: Dr. ARUN S L

